Addvininceremaths.om

 Prime Factors Problems

 Prime Factors Problems}

Time: 1 hour and 25 minutes

Score: \qquad /84

Surname:
 Other names:

Mark Scheme and revision available:
www.addvancemaths.com/revision/primefactors

Instructions

- Use black ink or ball-point pen.

- Answer all questions.
- Answer the questions in the spaces provided
- If blank paper is used, write down the question's number
- You must show all your working out.

Information

- The marks for each question are shown in brackets.
- Blank paper is provided at the end if extra space is needed.
- The questions are arranged in order of increasing difficulty.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Prime Factors Problems

1) Prime Factorise these numbers:

$$
\begin{array}{lll}
12=2^{2} \times 3 & 15=3 \times 5 & 18=2 \times 3^{2} \\
19=19 & 40=2^{3} \times 5 & 100=2^{2} \times 5^{2} \\
190=2 \times 5 \times 19 & 400=2^{4} \times 5^{2} & 1000=2^{3} \times 5^{3} \\
125=5^{3} & 250=2 \times 5^{3} & 84=2^{2} \times 3 \times 7
\end{array}
$$

2) Find the highest common factor of the following pairs:
a) 12 and 15 Choose the smaller
$2^{2} \times 3 \quad 3 \times 5$
b) 40 and 12

$$
\begin{equation*}
2^{3} \times 5 \quad 2^{2} \times 3 \tag{2}
\end{equation*}
$$

c) 1000 and 700

$$
\begin{equation*}
2^{3} \times 5^{3} \quad 2^{2} \times 5^{2} \times 7 \tag{2}
\end{equation*}
$$

d) 36 and 48

$$
\begin{align*}
& 36 \text { and } 48 \tag{2}\\
& 2^{2} \times 3^{2} \\
& 2^{4} \times 3
\end{align*}
$$

ten multiply.
\qquad
\qquad
\qquad
$2^{2} \times 5^{2}=100$
e) 700 and 280

$$
2^{2} \times 5^{2} \times 7
$$

f) 640 and 480

$$
2^{2} \times 3=12
$$

$$
\begin{equation*}
2^{2} \times 5 \times 7=140 \tag{2}
\end{equation*}
$$

$2^{7} \times 5 \quad 2^{5} \times 3 \times 5$

$$
\begin{equation*}
2^{5} \times 5=160 \tag{2}
\end{equation*}
$$

www.addvancemaths.com/revision/primefactors
2) Find the lowest common multiple of the following pairs on numbers: AThos the highest power of every prime in either
a) 12 and 15 prime Factorisation, then \qquad $2^{2} \times 3 \times 5=60$

$$
\begin{equation*}
2^{2} \times 3 \quad 3 \times 5 \tag{2}
\end{equation*}
$$ multiply.

b) 40 and 13

$$
\begin{equation*}
23 \times 5 \quad 13 \tag{2}
\end{equation*}
$$

$$
2^{3} \times 5 \times 13=520
$$

c) 1000 and 700

$$
\begin{equation*}
2^{3} \times 5^{3} \quad 2^{2} \times 5^{2} \times 7 \tag{2}
\end{equation*}
$$

$$
2^{3} \times 5^{3} \times 7=7000
$$

d) 36 and 48

$$
2^{2} \times 3^{2} \quad 2^{4} \times 3
$$

$$
\begin{equation*}
2^{4} \times 3^{2}=144 \tag{2}
\end{equation*}
$$

e) 700 and 280

$$
2^{2} \times 5^{2} \times 7 \quad 2^{3} \times 5 \times 7
$$

f) 640 and 480

$$
2^{7} \times 5 \quad 2^{4} \times 3
$$

$$
\begin{equation*}
2^{3} \times 5^{2} \times 7=1400 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2^{2} \times 3 \times 5=1920 \tag{2}
\end{equation*}
$$

Prime Factors Problems

4 Find the lowest common multiple of the following sets of numbers:
a) 12,15 and 18

$$
2^{2} \times 3 \quad 3 \times 5 \quad 2 \times 3^{2}
$$

$$
2^{2} \times 5 \times 3^{2}=180(3)
$$

b) 400,800 and 120

$$
2^{4} \times 5^{2} \quad 2^{5} \times 5^{2} \quad 2^{3} \times 3 \times 5
$$

$$
2^{5} \times 3 \times 5^{2}=2400(3)
$$

Prime Factors Problems
5) \quad Consider $A=2^{3} \times 5^{x} \times 7^{8}$

Write the following as products of their prime factors:
a) $15 A=$

$$
\begin{equation*}
2^{3} \times 3 \times 5^{x+1} \times 7^{8} \tag{2}
\end{equation*}
$$

b) $4 A=$

$$
\begin{equation*}
2^{5} \times 5^{x} \times 7^{8} \tag{2}
\end{equation*}
$$

c) $A^{3}=$

$$
\begin{equation*}
2^{9} \times 5^{3 x} \times 7^{24} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2^{3} \times 3 \times 5^{x} \times 7^{7} \tag{2}
\end{equation*}
$$

Prime Factors Problems Addveince

6) Consider $A=2^{m} \times 3^{n} \times 5^{2} \times 7$ and $B=2 \times 3^{n} \times 5^{4} \times 11$ where m and n are integers larger than 2 .
Write the following as products of their prime factors:
a) $A B=$

$$
\begin{equation*}
2^{m+1} \times 3^{2 n} \times 5^{6} \times 7 \times 11 \tag{2}
\end{equation*}
$$

b) $2 A B^{2}=$

c) The highest common factor of A and B

$$
\begin{equation*}
2 \times 3^{n} \times 5^{2} \tag{2}
\end{equation*}
$$

d) The lowest common multiple of A and B

Prime Factors Problems Addveince

7) Consider $A=2^{10} \times 3^{20} \times 5^{30}$

Write the following as products of their prime factors:
a) $10 \mathrm{~A}=$

$$
\begin{equation*}
2^{11} \times 3^{20} \times 5^{31} \tag{2}
\end{equation*}
$$

b) $\sqrt{A}=$

$$
\begin{equation*}
2^{5} \times 3^{10} \times 5^{15} \tag{2}
\end{equation*}
$$

c) $\sqrt{81 A}$

$$
\begin{equation*}
2^{5} \times 3^{12} \times 5^{15} \tag{2}
\end{equation*}
$$

d) $\sqrt[5]{A}$

$$
\begin{equation*}
2^{2} \times 3^{4} \times 5^{6} \tag{2}
\end{equation*}
$$

aa) Write $2^{12} \times 3^{3} \times 5^{11}$ in standard form.
Show your working.

$$
\begin{aligned}
& 2 \times 3^{3} \times 2^{11} \times 5^{11} \\
& 54 \times 10^{11}=5.4 \times 10^{12}
\end{aligned}
$$

$$
\begin{equation*}
5.4 \times 10^{12} \tag{3}
\end{equation*}
$$

b) The number of radioactive atoms in a sample of in a sample is 7.5×10^{28}.

$$
\begin{aligned}
& 75 \times 10^{27} \\
& 3 \times 5^{2} \times 2^{27} \times 5^{27}
\end{aligned}
$$

$$
\begin{equation*}
2^{27} \times 3 \times 5^{29} \tag{3}
\end{equation*}
$$

c) It is estimated that there are about 3.15×10^{79} protons in the universe.

Write this number as a product of its prime factors.

$$
\begin{aligned}
& 315 \times 10^{77} \\
& 3^{2} \times 5 \times 7 \times 2^{77} \times 5^{77}
\end{aligned}
$$

$$
\begin{equation*}
2^{77} \times 3^{2} \times 5^{78} \times 7 \tag{3}
\end{equation*}
$$

9) Consider the number $N=3^{4} \times 5^{6} \times 13^{8}$
a) Fred multiplies N by a number to make it even.
i) What is the smallest number Fred could have chosen?

Write your answer as an integer.
ii) Explain your answer.
\qquad 2
\qquad

b) Milly multiplies N by a number to make it a multiple of 42 .
i) What is the smallest number Milly could have chosen? Write your answer as an integer.
\qquad
ii) Explain your answer.
\qquad
of attest $2 \times 3 \times 7$.
Hence we need 2×7.
www.addvancemaths.com/revision/primefactors

Prime Factors Problems
Question 9 Continued

Addrventeer

$$
N=3^{4} \times 5^{6} \times 13^{8}
$$

c) Ahmed multiplies N by a number to make it a square number.
i) What is the smallest number Ahmed could have chosen? Write your answer as an integer.

$$
N=\left(3^{2} \times 5^{3} \times 13^{4}\right)^{2}
$$

ii) Explain your answer.

\qquad
d) Abby multiplies N by a number to make it a cube number.
i) What is the smallest number Abby could have chosen? Write your answer as an integer.

$$
3^{2} \times 13
$$

ii) Explain your answer.
\qquad 117
\qquad into multiples of 3. (2) www.addvancemaths.com/revision/primefactors

Blank Paper

Blank Paper

